

Series 11 : Mixture designs

1. Constraints

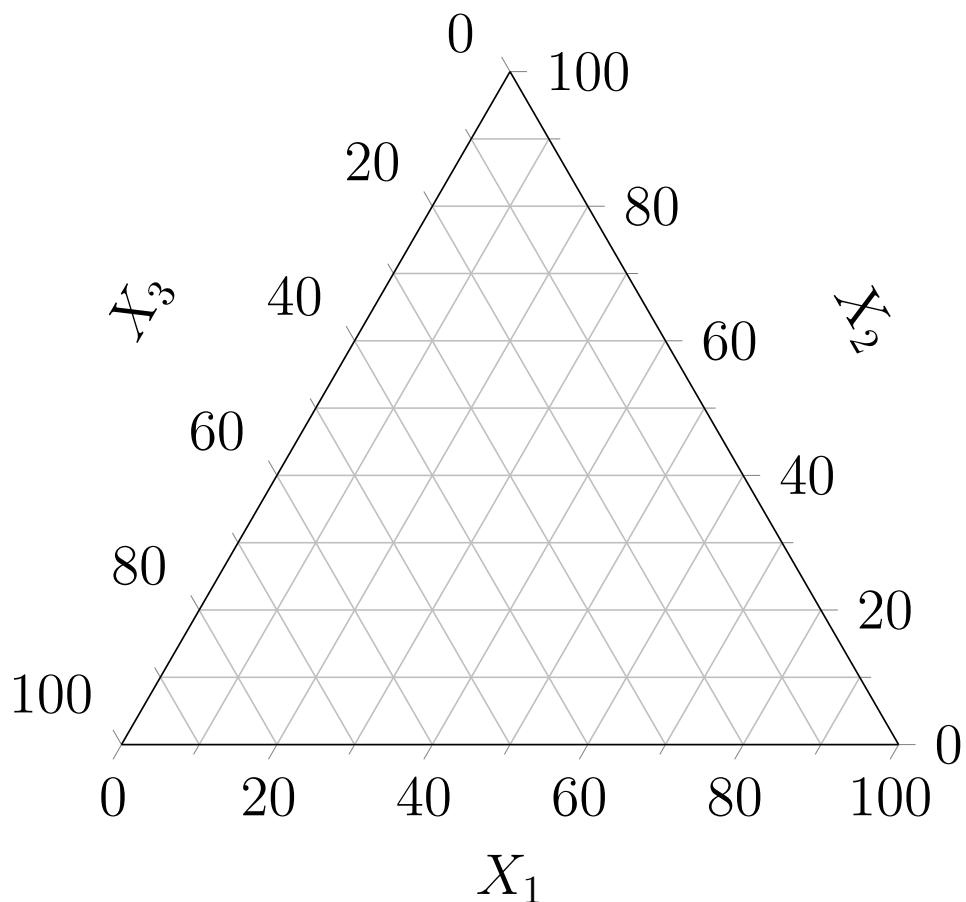
On a ternary diagram whose variables are x_1, x_2 et x_3 , let's determine the domains corresponding to the following constraints :

a) $20\% \leq x_1 \leq 50\%$

b) $\begin{cases} x_1 \geq 30\% \\ x_3 \leq 10\% \end{cases}$

c) $\begin{cases} x_1 \leq 30\% \\ x_2 \leq 50\% \\ x_1 \leq x_3 \end{cases}$

d) $x_1 + x_2 \leq x_3$



2. Simplex lattice design {q,3}

- a) Set up a simplex lattice design {3,3}
- b) Place the measurement points on a ternary diagram
(*ternplot(A,B,C,linetype)*)
- c) Set up a simplex lattice design {4,3}
- d) Draw an axonometry of the design

3. Simplex lattice design {3,2}

The data Y_1 and Y_2 given in the table here below have been obtained with a *simplex lattice design {3,2}* for factors x_1 , x_2 and x_3 .

x_1	x_2	x_3	Y_1	Y_2
0	0	1	1	1.1
0	1	0	1.5	1.4
1	0	0	1.3	1.4
0.5	0.5	0	3	3.2
0.5	0	0.5	3.4	3.3
0	0.5	0.5	3.6	3.7

- a) Using the least square fit method, determine the second degree Scheffé's model corresponding to the response Y_1 of the table
- b) Consider responses Y_1 and Y_2 as replicates and infer an adequate model with the routine *fitlm(...)*
- c) Draw the response surface with the help of the functions *ternsurf(...)* and *terncontour(...)*

4. Analysis of the ternary functions

- a) Code a function *Scheffe(y,x1,x2,x3)* to draw in 3D the response surface of a Scheffé's model,
- b) With this function, draw the linear Scheffé's model $y = 3x_1 + 2x_2$. By varying the coefficients of the model, analyze and understand its geometry.
- c) Use the function to represent the quadratic Scheffé's model, for example $y = x_1x_2 + x_1x_3 + x_2x_3$. By varying the coefficients of the model, analyze its geometry.

d) Use the function to represent the cubic Scheffé's model, for example $y = x_1x_2(x_1 - x_2) + x_1x_3(x_1 - x_3) + x_2x_3(x_2 - x_3)$. By varying the coefficients of the model, analyze its geometry.

Tips :

- Draw in a Cartesian plane using the *nan* value to draw only the ternary domain.
- Use symbolic calculation to manipulate functions and make transformations from the ternary coordinate system to the Cartesian coordinate system.

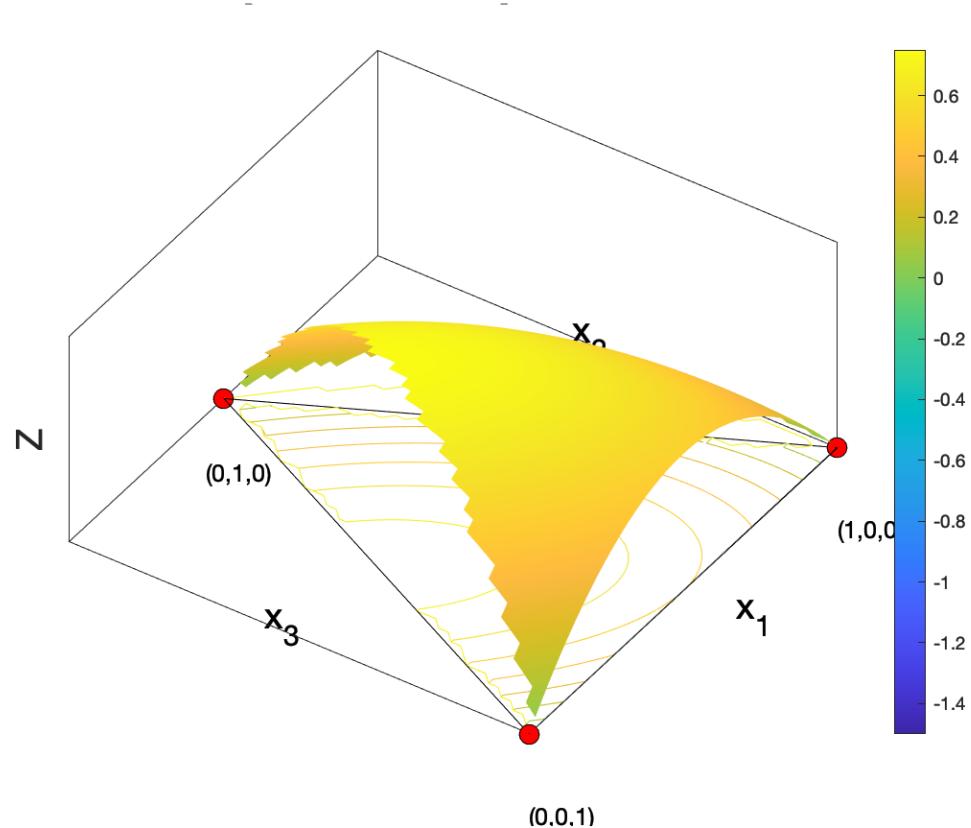


FIGURE 1 – Example of a quadratic Scheffé's model